
Bitwise operations (1)

Operations like addition, comparison, logical AND, etc. operate with bytes. C/C++ has 

also operations for handling bits. The operands of bitwise operations must be integers 

(char, int, unsigned int, etc.).

Bitwise negation ~ converts each bit 1 to bit 0 and each bit 0 to bit 1. Example:

unsigned char c1 = 0xA5; // bits are 1010 0101

printf("%u\n", (unsigned int) c1); // prints 165

unsigned char c2 = ~c1; // get 0101 1010

printf("%u\n", (unsigned int)c2); // prints 90

Remember that there is also negation ! (logical NOT) that converts zero (FALSE) to 1 

(TRUE) and any non-zero (TRUE) to 0 (FALSE).

Bitwise AND & performs bit-by-bit comparison of bits. If the both bits are 1, the 

resulting bit is also 1, otherwise 0. Example:

unsigned char c1 = 0xA5, c2 = 0x20; // bits are 1010 0101 and 0010 0000

printf("%u %u\n", (unsigned int) c1, (unsigned int) c2); // prints 165 32

unsigned char c3 = c1 & c2; // gets 0010 0000

printf("%u\n", (unsigned int)c3); // prints 32

Remember that there is also logical AND && in which TRUE && TRUE = TRUE and 

all the other combinations produce FALSE.



Bitwise operations (2)

Bitwise OR | performs bit-by-bit comparison of bits. If the both bits are not 0, the resulting 

bit is 1, otherwise 0. Example:

unsigned char c1 = 0xA5, c2 = 0x20; // bits are 1010 0101 and 0010 0000

printf("%u %u\n", (unsigned int) c1, (unsigned int) c2); // prints 165 32

unsigned char c3 = c1 | c2; // gets 1010 0101

printf("%u\n", (unsigned int)c3); // prints 165

Remember that there is also logical OR || in which FALSE || FALSE = FALSE and all the 

other combinations produce TRUE.

Bitwise exclusive OR ^ (XOR) performs bit-by-bit comparison of bits. If the both bits are 

different, the resulting bit is 1, otherwise 0. Example:

unsigned char c1 = 0xA5, c2 = 0x20; // bits are 1010 0101 and 0010 0000

printf("%u %u\n", (unsigned int) c1, (unsigned int) c2); // prints 165 32

unsigned char c3 = c1 ^ c2; // gets 1000 0101

printf("%u\n", (unsigned int)c3); // prints 133



Bitwise operations (3)

Applying bits instead of bytes we can compress data. Suppose we need to describe 

properties of a file:

• reading allowed or not alllowed

• writing allowed or not allowed

• on open, if not found, create; if found inform about error

• on open, if found, delete the existing contents or keep it

• …………………………

Suppose there is no more that 8 properties. Then we may pack this information into one 

byte:

• If bit 7 is 1, reading is allowed; if 0, not allowed

• If bit 6 is 1, writing is allowed; if 0 not, not allowed

• If bit 5 is 1, create the file if not found; if 0 consider that file open operation failed

• If bit 4 is 1, destroy the contents of existing files; if 0 keep it

• ………………………………………………………….

Here bit 7 is the highest (leftmost) bit.

So, the function opening file does not need 9 parameters (filename and properties). 2 is 

enough – the name of file and properties packed into a variable of type unsigned char.



Bitwise operations (4)
Now suppose we have

unsigned char properties = 0;

and we want to open file both for reading and writing. For that we need to set bits 7 and 6 

to 1:

properties = properties | 0xC0; // we may write also properties |= 0xC0;

// 0000 0000 | 1100 0000 gives us 1100 0000 

Next we want to set that if the file exists, its contents must be destroyed:

properties |= 0x10; // 1100 0000 | 0001 0000 = 1101 0000

So, if we want to set a bit in the target variable to 1, we must bitwise OR the target with a 

constant in which this bit is 1 and all the others are 0. If the bit in the target variable 

already was 1, it keeps its value. If it was 0, it becomes 1.

The function opening the file must analyse the properties, i.e. to clarify which bits are 0 

and which are 1. It can be done with bitwise AND, for example:

if (properties & 0x10)

{ // we get 0001 0000 that is TRUE or 0000 0000 that is FALSE

………………. // destroy file contents

}

So, if we need to know is a bit in the target variable 0 or 1, we must bitwise AND the 

target with a constant in which this bit is 1 and all the others are 0.



Bitwise operations (5)

If we want to set a bit in the target variable to 0, we must bitwise AND the target with a 

constant in which this bit is 0 and all the others are 1. If the bit in the target variable 

already was 0, it keeps its value. If it was 1, it becomes 0. Example:

unsigned char target = 0xD0; // 1101 0000

unsigned char mask = 0xEF; // 1110 1111

target = target & mask; // 1100 0000

or

target &= mask;

Toggling a bit means that if it was 1, it must be converted to 0 and if it was 0, it must be 

converted to 1. For that we have to bitwise XOR the target with a constant in which this bit 

is 1 and all the others are 0. Example:

unsigned char target = 0xD0; // 1101 0000

Toggle bit 4:

unsigned char mask = 0x10; // 0001 0000

target = target ^ mask; // 1100 0000

Toggle once more:

target = target ^ mask; // 1101 0000

or

target ^= mask;



Bitwise operations (6)

Binary bitwise shifting left << operation shifts all the bits of the value of left operand to 

the left by the number of places given by the right operand. The vacated places are filled 

with zeroes. Example:

unsigned char c1 = 0xA5; // bits are 1010 0101

printf("%u\n", (unsigned int) c1); // prints 165

unsigned char c2 = c1 << 5; // gets 1010 0000, the higher bits were lost

printf("%u\n", (unsigned int)c2); // prints 160

unsigned char c3 = c1 << 8; // gets 0000 00000

printf("%u\n", (unsigned int)c3); // prints 0

Binary bitwise shifting right >> operation shifts all the bits of the value of left operand to 

the right by the number of places given by the right operand. The vacated places are filled 

with zeroes. Example:

unsigned char c1 = 0xA5; // bits are 1010 0101

printf("%u\n", (unsigned int) c1); // prints 165

unsigned char c2 = c1 >> 5; // gets 0000 0101, the lower bits were lost

printf("%u\n", (unsigned int)c2); // prints 5

unsigned char c3 = c1 >> 8; // gets 0000 00000

printf("%u\n", (unsigned int)c3); // prints 0

Shifting of negative signed values leads to unpredictable results.



Bitwise operations (7)

Example:

unsigned int color; // the higher byte is not used, the following bytes present the intensity

                               // of red, green and blue components. For example 0x00FF0000

                               // presents the most intensive red, 0x00FF00FF the most intensive

                               // magenta, 0x00007F00 dark green

unsigned char mask = 0xFF; 

unsigned int red = (color >> 16) & mask;

unsigned int green = (color >> 8) & mask;

unsigned int blue = color & mask;

If the color is 0x00AA0000 (dark red) or 0000 0000 1010 1010 0000 0000 0000 0000, 

then shifting right 16 positions gives us 0000 0000 0000 0000 0000 0000 1010 1010. 

Before bitwise AND mask is automatically converted to unsigned int, so we get

   0000 0000 0000 0000 0000 0000 1010 1010

&

   0000 0000 0000 0000 0000 0000 1111 1111

  --------------------------------------

 0000 0000 0000 0000 0000 0000 1010 1010 // intensity of red



Bitwise operations (8)

If the color is 0x00AA8000 (light brown) or 0000 0000 1010 1010 1000 0000 0000 0000, 

then shifting right 8 positions gives us 0000 0000 0000 0000 1010 1010 1000 0000. 

Before bitwise AND mask is automatically converted to unsigned int, so we get

   0000 0000 0000 0000 1010 1010 1000 0000

&

   0000 0000 0000 0000 0000 0000 1111 1111

  --------------------------------------

 0000 0000 0000 0000 0000 0000 1000 0000 // intensity of green



Bit fields (1)

Bit fields is the alternative way to handle separate bits. Suppose we want to store the 

parameters of font for a section of text. The font may bold, italic, underlined or double 

underlined or any combination of them. We may use a variable of type unsigned char and 

agree that bit 3 (7 is the highest) is 1 if the text is bold and 0, if not. Similarly bit 2 is 1 if 

the text is in italic and 0 if not, etc. But it is unpleasant to remember the meaning of each 

bit. The corresponding bit field may be as follows:

struct {

   unsigned char bold: 1;

   unsigned char italics: 1;

   unsigned char single_underlined: 1;

   unsigned char double_underlined: 1;

} font_par;

Now we can handle each bit as a member of struct, for example:

font_par.bold = 0;

font_par.italics = 1;

font_par. single_underlined = 1;

font_par.double_underlined = 0;

Description unsigned char italics : 1 tells that the type of member italics is unsigned char 

but one bit is enough for storing its value. 



Bit fields (2)

Number of bits for a bit field member may be greater than 1. For example in a date day 

cannot exceed 31 (0001 1111), month cannot exceed 12 (0000 1100) and the year cannot 

exceed 2020 (0111 1110 0100). So to economize the memory usage we can define

struct Date {

unsigned char day : 5;

unsigned char month : 4;

unsigned short int year : 11;

};

Bit field members can be integers, but not arrays or pointers. 



Variable number of arguments (1)

#include "stdarg.h"

The prototype of such functions should have a parameter list with at least one parameter 

followed by three points, for example

double mean(int n, …);

double mean(int n, double x, …);

int printf(char *, …);

void fun(…); // error, no parameters

void fun(int n, …, double x); // error, points must be at the end of paremeter list

The last of the fixed parameters must in some way present the actual number of 

arguments represented by points. For example:

double result = mean(5, 1.0, 2.0, 3.0, 4.0, 5.0); 

     // here the points are replaced by a list of 5 arguments

printf("%d %d\n", x1, x2);

      // here the format string contains two "%d" format specifyers, so the points are

      // replaced by a list of two integers 



Variable number of arguments (2)

double mean(int n, ...)

{

  va_list cursor; // va_list is a typedef from stdarg.h

  va_start(cursor, n); // here we set the cursor to the beginning of variable argument list,

                                 // it starts after input parameter n 

  double sum = 0;

for (int i = 0; i < n; i++)

 {

       sum += va_arg(cursor, double);

                                // va_arg returns, one after another, the arguments from list

                                // its second parameter is to specify the type of argument 

  }

  va_end(cursor); // closes the list, cleans up everything

  return sum / n;

}



Linear data structures (1)

In linear data structures the elements (integers, pointers, structs, etc.) are ordered – i.e. we 

may say, which member is the first, which is the seconds, etc. The simplest ordered linear 

data structure is array.

Problems with array:

1. If we need to insert a new element, we must at 

first check, is there at the end of array some free 

space. If not, we have to reallocate our memory 

field. Often it is accompanied with relocating of 

large amounts of data. After that we need to free 

the position for the new element: i.e. once more 

shift data.

2. If we need to remove an element, we must shift 

data to left to cover the position. One position at 

the end of array becomes unused. There is an 

alternative solution: do not shift but somehow 

mark that the position as empty (for example fill 

with zeroes).  



Linear data structures (2)

Let us have:

struct date

{

  short int Day;

  char Month[4]; // like "Jan", "Feb", etc.

  short int Year;

}

typedef struct date DATE;

struct person

{

  char *pName,

          *pAddress;

  long int Code;

  DATE Birthdate;

  struct Person *pNext;

}

typedef struct person PERSON;



Linear data structures (3)

With pointer pNext we create linked list:

PERSON *pList; // points to the first element

Pointer pNext of the first element points to the second element, pointer pNext of the second 

element points to the third element, etc. Pointer pNext of the last element is zero. 

The linked list does not need a long compact memory field. The elements may be in the 

heap higgledy-piggledy, without any order. But due to the pointers the data structure itself 

is ordered.



Linear data structures (4)

Inserting a new element and removing an 

existing element is much more effective than 

those operations with arrays. We do not need 

to shift large amounts of data and all the 

elements of list keep their current location. 

The only task we need to perform is to reset 

the pNext pointers.

The disadvantage of linked list is that we 

cannot use indeces. To access the i-th element 

we have to move from the first element (this 

is the only element we can access directly) to 

second, from the second to the third, etc. In an 

array we need just write like *(pArray +i) or 

Array[i]. 

In data processing linked lists are the most used type of linear data structures. Arrays are 

used only when the amount of data is not large and the expected max number of data is 

well known. If the number of elements is unpredictable and continually changing, the 

linked lists have no alternatives.



Linear data structures (5)

Example: iteration through linked list

PERSON *GetPerson(PERSON *pList, int iPos)

{ // we want to get the pointer to item on position iPos

  if (!pList || iPos < 0) // check input

      return 0; // errors

  PERSON *p; // auxiliary variable

  int i; // auxiliary variable

  for (i = 0, p = pList;

         p && i < iPos; 

         p = p->pNext, i++);

   return p;

}



Linear data structures (6)
Suppose iPos is 2, i.e. we want to get the pointer to third item. 

Loop starts: p = pList, i = 0;

p points to the first item.

As p is not zero and i < 2, looping continues. p->pNext is the address of second item. 

p = p->pNext, i++;   After that p points to the second item and i is 1.

As p is not zero and i < 2, looping continues. p->pNext is the address of third item. 

p = p->pNext, i++;   After that p points to the third item and i is 2.

As i is now 2, the looping breaks off and we may return p as the searching result.



Linear data structures (7)

Example: iteration through linked list

PERSON *GetPerson(PERSON *pList, char *pKey)

{ // we want to get the pointer to person with name specified by the key

  if (!pList || !pKey) // check input

      return 0;

  PERSON *p; // auxiliary variable

  for (p = pList;  p && strcmp(pKey, p->pName); p = p->pNext);

  // strcmp() compares two strings. If they are identical, the return value is 0.

  // The iteration stops when p points to item with name identical with key or when 

  // p is zero (i.e. the item we need does not exist)

   return p;

}

A key is something (string, integer, etc.) that we can directly or after some calculations 

retrieve from the record. Requirements: there must be algorithms with which we can assert 

that:

• two keys are equal

• if they are not equal, which of them is less



Linear data structures (8)

Example: insert into linked list

PERSON *Insert(PERSON *pList, PERSON *pNew, int iPos) 

{ // we want to insert a new item into position iPos. 

   // the function returns the pointer to first item

  if (!pNew || iPos < 0) // error in input

    return pList;

  if (!iPos)

 { // insert to the beginning, the new item will be the first one

    pNew->pNext = pList; 

    return pNew; 

  }

  PERSON *p; // auxiliary variable

  if (p = GetPerson(pList, iPos - 1))  

 { // insert into the middle or to the end

    pNew->pNext = p->pNext; 

    p->pNext = pNew; 

  }

   return pList;

}



Linear data structures (9)

if (!iPos) 

{ // insert to the beginning, the new item will be the first one

    pNew->pNext = pList; // 4

    return pNew; // 5

 }

On start pList points to the first item. As iPos is zero, the previous first item must be 

reduced to the second position. So the pNext member of the new item must point to the 

former first item (operation 4). The return value is the pointer to the new first item 

(operation 5).



Linear data structures (10)

if (p = GetPerson(pList, iPos - 1))// 1 

{ 

    pNew->pNext = p->pNext; // 2

    p->pNext = pNew; // 3

 }

   return pList; // keeps its value

}

We want to insert the new item into position iPos. Consequently the item on position iPos – 1 

must start to point to the new item. Therefore the first thing to do is to find the pointer to item 

on position iPos -1. For that we may use function GetPerson() from slide Linear data 

structures (5) (operation 1). If iPos is wrong (negative or too large), GetPerson() returns 0 

and the inserting will be omitted. If the item on position iPos - 1 was found, we correct its 

pNext member (operation 3) and set the new item to point to item that was on position iPos 

and now is reduced to position iPos +1 (operation 2).



Linear data structures (11)
Example: remove from linked list

PERSON *Remove(PERSON *pList, int iPos, PERSON **ppResult)

{ // we want to remove the item on position iPos

   // the removed item is not destroyed: the pointer to it is the output value

   // the function returns the pointer to first item

  if (!pList || iPos < 0 || !ppResult)

    return pList; // list is empty or errors in input data

 *ppResult = 0;

  PERSON *p; // auxiliary variable

  if (!iPos) 

 {  // remove the first

   *ppResult = pList; 

    pList = pList->pNext; 

  }

  else if (p = GetPerson(pList, iPos - 1))  

 {  // remove from the middle or from the end

     *ppResult = p->pNext; 

     p->pNext = p->pNext->pNext; 

  }

   return pList;

}



Linear data structures (12)

Usage example: we have linked list

PERSON *pStudentsGroup;

Remove the first and fourth students and print their names.

PERSON *pFirst, *pFourth;

pStudentGroup = Remove(pStudentGroup, 0, &pFirst);

if (pFirst)

{

  printf("Student %s was removed from list\n", pFirst->pName);

}

pStudentGroup = Remove(pStudentGroup, 4, &pFourth);

if (pFourth)

{

  printf("Student %s was removed from list\n", pFourth->pName);

}

On the last call to

PERSON *Remove(PERSON *pList, int iPos, PERSON **ppResult) { …… }

• the value of pStudentsGroup is copied into pList

• iPos gets value 4

• the pointer to pFourth (which itself is also a pointer) is calculated and copied into 

ppResult. In other words, ppResult will point to pFourth



Linear data structures (13)

if (!iPos) 

{  // remove the first

   *ppResult = pList; // 4

    pList = pList->pNext; // 5

}

The second item is now the first and pList must point to it (operation 5). To pointer pFirst 

(variable of the calling function and not the variable of Remove()) is assigned the pointer to 

the former first item (operation 4).



Linear data structures (14)

else if (p = GetPerson(pList, iPos - 1)) // 1

{ 

     *ppResult = p->pNext; // 2

     p->pNext = p->pNext->pNext; // 3

 }

   return pList;

}

We want to remove the item on position iPos. Consequently the item on position iPos – 1 

must start to point to the item that is on position iPos + 1. Therefore the first thing to do is 

to find the pointer to item on position iPos -1. For that we may use function GetPerson() 

from slide Linear data structures (5) (operation 1). If iPos is wrong (negative or too large), 

GetPerson() returns 0 and the removing will be omitted. If the item on position iPos - 1 was 

found, we correct its pNext member (operation 3). To pointer pFourth (variable of the 

calling function and not the variable of Remove()) is assigned the pointer to item that was 

on position iPos (operation 2).



Linear data structures (15)

struct person

{

  char *pName,

          *pAddress;

  long int Code;

  DATE Birthdate;

  struct Person *pNext,

                        *pPrior;

};

In double linked list we can move to both directions. 

Pointer pPrior in the first element is 0.

In circularly linked list the "last" element points to the "first" (terms "first" and "last" are 

conditional here). 



Linear data structures (16)

If the new elements must be always appended (and not inserted into the middle of list), it 

is useful to have 2 outside pointers: one to the first and one to the last element.

struct Header

{

  void *pRecord;

   int type;

   struct Header  *pNext;

};

The separate headers are needed when the structs in data structure do not have pNext pointers 

or are of different types.



Linear data structures (17)

struct Header

{

    void *pRecord;

    int type;

};

This solution is very suitable but only if we are able the estimate the number of elements 

and thus allocate the vector with proper length. When deleting, instead of compressing 

simply replace the pointer with 0. When sorting, the structs are not moved because we 

may simply rearrange the pointers. 



Unions (1)
The unions enable to store data of different types in the same memory field. Let us have

struct sExample {

   int iData;

   double dData;

   char cData;

};

struct sExample struct_example;

To store variable struct_example we need at least 13 bytes (actually the memory allocation 

system gives us 16 bytes). 

Declaration of an union is very similar:

union uExample {

  int iData;

  double dData;

  char cData;

};

union uExample union_example;

But to store variable union_example we need only 8 bytes, because dData is the longest 

member:

union_example.dData = 3.14159; // all the 8 bytes are in use

union_example.iData = 10; // the same 8 bytes, 4 bytes unused

union_example.cData = 'A'; // the same 8 bytes, 7 bytes unused



Unions (2)
Example: suppose we want to know how negative integers are stored:

union study {

    int number;

    unsigned char uc[4];

};

union study test;

test.number = -10;

for (int i = 0;  i < 4;  i++)

    printf("%02X ", test.uc[i]);

printf("\n");

Variable test occupies 4 bytes. Those bytes we handle as an int, but after that as an array of 

unsigned char. With this trick we may print out the memory dumpings – the contents of 

memory field in hex byte-by-byte.

The programmer himself must know which type of data is currently inside union. If, for 

example, he has stored a double number but handles it as integer, the result is formally OK 

but actually senseless. 



Unions (3)
Example: let us have

struct Book {

  const char *pAuthor,

                   *pTitle;

  short int Year;

};

struct Article { // in a journal

  const char *pAuthor,

                    *pTitle,

                    *pJournal;

  short int Year,

                 Number;

};

union Reference {

  struct Book book;

  struct Article article ;

};

union Reference Ref1, Ref2;

Ref1.book.pAuthor = "Nicolai M. Josuttis"; // use for storing a book

Ref1.book.pTitle = "The C++ Standard Library";

Ref1.book.year = 2012;

Ref2.article.pAuthor = "Vlodymyr Myrmyy"; // use for storing an article

Ref2.article.pTitle = "A Simple and Efficient FFT Implementation in C++";

Ref2.article.pJournal = "Dr. Dobbs Journal";

Ref2.article.Year = 2007;

Ref2.article.Number = 5;



Unions (4)

To build a linked list we need one more declaration:

#define BOOK 1

#define ARTICLE 2

struct Entry {

   short int type; // BOOK or ARTICLE

   union Reference reference;

   struct Entry *pNext; 

};



Serialization

char *Serialize(PERSON *p) { // on disk memory addresses are senseless    

   short int n1 = strlen(p->pName) +1, n2 = strlen(p->pAddress) + 1, n = n1 + n2;

   char *pSer, *r;

   pSer = (char *)malloc(n += sizeof(PERSON) + sizeof(int) – sizeof(PERSON *) -

                                        2 * sizeof(char *);

memcpy(r=pSer,&n,sizeof(int)); //1

   memcpy(r+=sizeof(int),p->pName,n1); //2

memcpy(r+=n1,p->pAddress,n2); //3

   memcpy(r+=n2,&p->Code,sizeof(long int)); //4

   memcpy(r+sizeof(long int),&p->Birthdate.day, sizeof(DATE)); //5

   return pSer; // serialized compact struct ready for writing to disk

}



Long jump (1)

#include "setjmp.h" // see http://www.cplusplus.com/reference/csetjmp/longjmp/ 

The long jump mechanism is a part of C. In C++ the long jumps, although allowed,  

may lead to unpredictable behavor.

jmp_buf env; // global variable, stores the current execution environment

switch (setjmp(env)) // return point

{

case 0: ………………..  // on the first call the setjmp return value is 0

break;

case 1: ………………..  // handle abnormal situation 1

break;

case 2: ………………… // handle abnormal situation 2

break;

                 …………………

}

If somewhere an error occurred, call function longjmp():

longjmp(env, n); // n is the index of abnormal situation

http://www.cplusplus.com/reference/csetjmp/longjmp/


Long jump (2)

Example:

jmp_buf env;

int main()

{

switch (setjmp(env)) // return point

{

case 0: fun1(); // on the first call the setjmp return value is 0, fun1() is called

break;

case 1: printf("Failure\n");

return 1;

     }

……………………………….

}

void fun2() // called by fun1

{

  ……………………………….

  if (n <= 0)

      longjmp(env, 1); // exists fun2(), jumps back to return point, setjmp returns 1

  ……………………………….

}


	Slide 1: Bitwise operations (1)
	Slide 2: Bitwise operations (2)
	Slide 3: Bitwise operations (3)
	Slide 4: Bitwise operations (4)
	Slide 5: Bitwise operations (5)
	Slide 6: Bitwise operations (6)
	Slide 7: Bitwise operations (7)
	Slide 8: Bitwise operations (8)
	Slide 9: Bit fields (1)
	Slide 10: Bit fields (2)
	Slide 11: Variable number of arguments (1)
	Slide 12: Variable number of arguments (2)
	Slide 13: Linear data structures (1)
	Slide 14: Linear data structures (2)
	Slide 15: Linear data structures (3)
	Slide 16: Linear data structures (4)
	Slide 17: Linear data structures (5)
	Slide 18: Linear data structures (6)
	Slide 19: Linear data structures (7)
	Slide 20: Linear data structures (8)
	Slide 21: Linear data structures (9)
	Slide 22: Linear data structures (10)
	Slide 23: Linear data structures (11)
	Slide 24: Linear data structures (12)
	Slide 25: Linear data structures (13)
	Slide 26: Linear data structures (14)
	Slide 27: Linear data structures (15)
	Slide 28: Linear data structures (16)
	Slide 29: Linear data structures (17)
	Slide 30: Unions (1)
	Slide 31: Unions (2)
	Slide 32: Unions (3)
	Slide 33: Unions (4)
	Slide 34: Serialization
	Slide 35: Long jump (1)
	Slide 36: Long jump (2)

